笔记 Bioinformatics Al

发布时间:2019-03-12 23:20:58编辑:auto阅读(2642)

    Chapter2 WHICH DNA PATTERNS PLAY THE ROLE OF MOLECULAR CLOCKS 

    寻找模序 

    一、

    转录因子会结合基因上游的特定序列,调控基因的转录表达,但是在不同个体中,这个序列会有一些差别。本章讲述用贪婪、随机算法来寻找这个序列:寻找模序。

    (NF-κB binding sites from the Drosophila melanogaster genome)

    二、一些概念:

    1. Score、Profile 的含义如图

    根据profile matrix 可以计算出某个kmer在某一profile下的概率

    三、

    提出问题:Motif Finding Problem:

    Given a collection of strings, find a set of k-mers, one from each string, that minimizes the score of the resulting motif.

    Input: A collection of strings Dna and an integer k.

    Output: A collection Motifs of k-mers, one from each string in Dna, minimizing Score(Motifs) among all possible choices of k-mers.

    一组序列中,寻找一组k-mer,它们的Score是最低的(或者与consensus sequence的海明距离之和最小)

     

    1 遍历

    MedianString(Dna, k)
            distance ← ∞
            for each k-mer Pattern from AA…AA to TT…TT
                if distance > d(Pattern, Dna)
                     distance ← d(Pattern, Dna)
                     Median ← Pattern
            return Median

     

    2 贪婪法 GreedyMotifSearch

    GREEDYMOTIFSEARCH(Dna, k, t)
            BestMotifs ← motif matrix formed by first k-mers in each string
                          from Dna
            for each k-mer Motif in the first string from Dna
                Motif1 ← Motif
                for i = 2 to t
                    form Profile from motifs Motif1, …, Motifi - 1
                    Motifi ← Profile-most probable k-mer in the i-th string
                              in Dna
                Motifs ← (Motif1, …, Motift)
                if Score(Motifs) < Score(BestMotifs)
                    BestMotifs ← Motifs
            output BestMotifs

    详解 http://www.mrgraeme.co.uk/greedy-motif-search/

     

    *贪婪法 GreedyMotifSearch with pseudocounts

    pseudocounts:在形成profile matrix时,给0项设为一个较小的值

    GreedyMotifSearch(Dna, k, t)
            form a set of k-mers BestMotifs by selecting 1st k-mers in each string from Dna
            for each k-mer Motif in the first string from Dna
                Motif1 ← Motif
                for i = 2 to t
                    apply Laplace's Rule of Succession to form Profile from motifs   Motif1, …, Motifi-1
                    Motifi ← Profile-most probable k-mer in the i-th string in Dna
                Motifs ← (Motif1, …, Motift)
                if Score(Motifs) < Score(BestMotifs)
                    BestMotifs ← Motifs
            output BestMotifs

     

    3. 随机法Randomized Motif Search

    RandomizedMotifSearch(Dna, k, t)
         #随机从每个DNA取k-mer,生成一组motifs randomly select k-mers Motifs = (Motif1, …, Motift) in each string from Dna BestMotifs ← Motifs while forever Profile ← Profile(Motifs)#根据motifs形成Profile矩阵 Motifs ← Motifs(Profile, Dna) #根据profile矩阵从一组DNA生成一组几率最大的motifs if Score(Motifs) < Score(BestMotifs) BestMotifs ← Motifs else return BestMotifs

    随机算法起到作用的原因是,随机选取的一组Motifs,有可能选到潜在正确的一个k-mer,那么就在这中形成倾斜,直至寻找到较优解

    改进: 上一个算法,每次迭代都重新随机生成一组新的Motifs,这可能把潜在的正确模序抛弃了,改进的方法是每次随机只更改一行k-mer

    GibbsSampler(Dna, k, t, N)
            randomly select k-mers Motifs = (Motif1, …, Motift) in each string from Dna
            BestMotifs ← Motifs
            for j ← 1 to N
                i ← Random(t)
                Profile ← profile matrix constructed from all strings in Motifs except for Motif[i]
                Motif[i] ← Profile-randomly generated k-mer in the i-th sequence
                if Score(Motifs) < Score(BestMotifs)
                    BestMotifs ← Motifs
            return BestMotifs

     

关键字