【python图像处理】python绘制

发布时间:2019-08-01 17:26:31编辑:auto阅读(1274)

    3D图形在数据分析、数据建模、图形和图像处理等领域中都有着广泛的应用,下面将给大家介绍一下如何使用python进行3D图形的绘制,包括3D散点、3D表面、3D轮廓、3D直线(曲线)以及3D文字等的绘制。


    准备工作:

    python中绘制3D图形,依旧使用常用的绘图模块matplotlib,但需要安装mpl_toolkits工具包,安装方法如下:windows命令行进入到python安装目录下的Scripts文件夹下,执行: pip install --upgrade matplotlib即可;linux环境下直接执行该命令。

    安装好这个模块后,即可调用mpl_tookits下的mplot3d类进行3D图形的绘制。

    下面以实例进行说明。


    1、3D表面形状的绘制

    from mpl_toolkits.mplot3d import Axes3D
    import matplotlib.pyplot as plt
    import numpy as np
    
    fig = plt.figure()
    ax = fig.add_subplot(111, projection='3d')
    
    # Make data
    u = np.linspace(0, 2 * np.pi, 100)
    v = np.linspace(0, np.pi, 100)
    x = 10 * np.outer(np.cos(u), np.sin(v))
    y = 10 * np.outer(np.sin(u), np.sin(v))
    z = 10 * np.outer(np.ones(np.size(u)), np.cos(v))
    
    # Plot the surface
    ax.plot_surface(x, y, z, color='b')
    
    plt.show()

    这段代码是绘制一个3D的椭球表面,结果如下:



    2、3D直线(曲线)的绘制

    import matplotlib as mpl
    from mpl_toolkits.mplot3d import Axes3D
    import numpy as np
    import matplotlib.pyplot as plt
    
    mpl.rcParams['legend.fontsize'] = 10
    
    fig = plt.figure()
    ax = fig.gca(projection='3d')
    theta = np.linspace(-4 * np.pi, 4 * np.pi, 100)
    z = np.linspace(-2, 2, 100)
    r = z**2 + 1
    x = r * np.sin(theta)
    y = r * np.cos(theta)
    ax.plot(x, y, z, label='parametric curve')
    ax.legend()
    
    plt.show()

    这段代码用于绘制一个螺旋状3D曲线,结果如下:



    3、绘制3D轮廓

    from mpl_toolkits.mplot3d import axes3d
    import matplotlib.pyplot as plt
    from matplotlib import cm
    
    fig = plt.figure()
    ax = fig.gca(projection='3d')
    X, Y, Z = axes3d.get_test_data(0.05)
    cset = ax.contour(X, Y, Z, zdir='z', offset=-100, cmap=cm.coolwarm)
    cset = ax.contour(X, Y, Z, zdir='x', offset=-40, cmap=cm.coolwarm)
    cset = ax.contour(X, Y, Z, zdir='y', offset=40, cmap=cm.coolwarm)
    
    ax.set_xlabel('X')
    ax.set_xlim(-40, 40)
    ax.set_ylabel('Y')
    ax.set_ylim(-40, 40)
    ax.set_zlabel('Z')
    ax.set_zlim(-100, 100)
    
    plt.show()

    绘制结果如下:



    4、绘制3D直方图

    from mpl_toolkits.mplot3d import Axes3D
    import matplotlib.pyplot as plt
    import numpy as np
    
    fig = plt.figure()
    ax = fig.add_subplot(111, projection='3d')
    x, y = np.random.rand(2, 100) * 4
    hist, xedges, yedges = np.histogram2d(x, y, bins=4, range=[[0, 4], [0, 4]])
    
    # Construct arrays for the anchor positions of the 16 bars.
    # Note: np.meshgrid gives arrays in (ny, nx) so we use 'F' to flatten xpos,
    # ypos in column-major order. For numpy >= 1.7, we could instead call meshgrid
    # with indexing='ij'.
    xpos, ypos = np.meshgrid(xedges[:-1] + 0.25, yedges[:-1] + 0.25)
    xpos = xpos.flatten('F')
    ypos = ypos.flatten('F')
    zpos = np.zeros_like(xpos)
    
    # Construct arrays with the dimensions for the 16 bars.
    dx = 0.5 * np.ones_like(zpos)
    dy = dx.copy()
    dz = hist.flatten()
    
    ax.bar3d(xpos, ypos, zpos, dx, dy, dz, color='b', zsort='average')
    
    plt.show()

    绘制结果如下:


    5、绘制3D网状线

    from mpl_toolkits.mplot3d import axes3d
    import matplotlib.pyplot as plt
    
    
    fig = plt.figure()
    ax = fig.add_subplot(111, projection='3d')
    
    # Grab some test data.
    X, Y, Z = axes3d.get_test_data(0.05)
    
    # Plot a basic wireframe.
    ax.plot_wireframe(X, Y, Z, rstride=10, cstride=10)
    
    plt.show()

    绘制结果如下:



    6、绘制3D三角面片图

    from mpl_toolkits.mplot3d import Axes3D
    import matplotlib.pyplot as plt
    import numpy as np
    
    
    n_radii = 8
    n_angles = 36
    
    # Make radii and angles spaces (radius r=0 omitted to eliminate duplication).
    radii = np.linspace(0.125, 1.0, n_radii)
    angles = np.linspace(0, 2*np.pi, n_angles, endpoint=False)
    
    # Repeat all angles for each radius.
    angles = np.repeat(angles[..., np.newaxis], n_radii, axis=1)
    
    # Convert polar (radii, angles) coords to cartesian (x, y) coords.
    # (0, 0) is manually added at this stage,  so there will be no duplicate
    # points in the (x, y) plane.
    x = np.append(0, (radii*np.cos(angles)).flatten())
    y = np.append(0, (radii*np.sin(angles)).flatten())
    
    # Compute z to make the pringle surface.
    z = np.sin(-x*y)
    
    fig = plt.figure()
    ax = fig.gca(projection='3d')
    
    ax.plot_trisurf(x, y, z, linewidth=0.2, antialiased=True)
    
    plt.show()

    绘制结果如下:



    7、绘制3D散点图

    from mpl_toolkits.mplot3d import Axes3D
    import matplotlib.pyplot as plt
    import numpy as np
    
    
    def randrange(n, vmin, vmax):
        '''
        Helper function to make an array of random numbers having shape (n, )
        with each number distributed Uniform(vmin, vmax).
        '''
        return (vmax - vmin)*np.random.rand(n) + vmin
    
    fig = plt.figure()
    ax = fig.add_subplot(111, projection='3d')
    
    n = 100
    
    # For each set of style and range settings, plot n random points in the box
    # defined by x in [23, 32], y in [0, 100], z in [zlow, zhigh].
    for c, m, zlow, zhigh in [('r', 'o', -50, -25), ('b', '^', -30, -5)]:
        xs = randrange(n, 23, 32)
        ys = randrange(n, 0, 100)
        zs = randrange(n, zlow, zhigh)
        ax.scatter(xs, ys, zs, c=c, marker=m)
    
    ax.set_xlabel('X Label')
    ax.set_ylabel('Y Label')
    ax.set_zlabel('Z Label')
    
    plt.show()

    绘制结果如下:



    8、绘制3D文字

    from mpl_toolkits.mplot3d import Axes3D
    import matplotlib.pyplot as plt
    
    
    fig = plt.figure()
    ax = fig.gca(projection='3d')
    
    # Demo 1: zdir
    zdirs = (None, 'x', 'y', 'z', (1, 1, 0), (1, 1, 1))
    xs = (1, 4, 4, 9, 4, 1)
    ys = (2, 5, 8, 10, 1, 2)
    zs = (10, 3, 8, 9, 1, 8)
    
    for zdir, x, y, z in zip(zdirs, xs, ys, zs):
        label = '(%d, %d, %d), dir=%s' % (x, y, z, zdir)
        ax.text(x, y, z, label, zdir)
    
    # Demo 2: color
    ax.text(9, 0, 0, "red", color='red')
    
    # Demo 3: text2D
    # Placement 0, 0 would be the bottom left, 1, 1 would be the top right.
    ax.text2D(0.05, 0.95, "2D Text", transform=ax.transAxes)
    
    # Tweaking display region and labels
    ax.set_xlim(0, 10)
    ax.set_ylim(0, 10)
    ax.set_zlim(0, 10)
    ax.set_xlabel('X axis')
    ax.set_ylabel('Y axis')
    ax.set_zlabel('Z axis')
    
    plt.show()

    绘制结果如下:



    9、3D条状图

    from mpl_toolkits.mplot3d import Axes3D
    import matplotlib.pyplot as plt
    import numpy as np
    
    fig = plt.figure()
    ax = fig.add_subplot(111, projection='3d')
    for c, z in zip(['r', 'g', 'b', 'y'], [30, 20, 10, 0]):
        xs = np.arange(20)
        ys = np.random.rand(20)
    
        # You can provide either a single color or an array. To demonstrate this,
        # the first bar of each set will be colored cyan.
        cs = [c] * len(xs)
        cs[0] = 'c'
        ax.bar(xs, ys, zs=z, zdir='y', color=cs, alpha=0.8)
    
    ax.set_xlabel('X')
    ax.set_ylabel('Y')
    ax.set_zlabel('Z')
    
    plt.show()

    绘制结果如下:




    2017.09.21

关键字