Python3 安装 numpy 科学库

发布时间:2019-09-26 07:25:30编辑:auto阅读(1838)

    
    [root@Singapore numpy]# wget https://pypi.python.org/packages/ee/66/7c2690141c520db08b6a6f852fa768f421b0b50683b7bbcd88ef51f33170/numpy-1.14.0.zip
    [root@Singapore numpy]# md5sum numpy-1.14.0.zip 
    c12d4bf380ac925fcdc8a59ada6c3298  numpy-1.14.0.zip
    [root@Singapore numpy]# unzip numpy-1.14.0.zip 
    [root@Singapore numpy]# cd numpy-1.14.0
    [root@Singapore numpy-1.14.0]# cat INSTALL.rst.txt                                          #安装说明
    [root@Singapore numpy-1.14.0]# python3  setup.py build install --prefix /root/python/numpy  #注意安装路径
    [root@Singapore numpy-1.14.0]# echo "export PYTHONPATH=/root/python/numpy/lib/python3.6/site-packages" >> ~/.bashrc  #注意安装路径
    [root@Singapore numpy-1.14.0]# . ~/.bashrc
    [root@Singapore numpy-1.14.0]# echo $?
    0
    [root@Singapore numpy-1.14.0]# 
    

    写一个线性回归 试一试

    [root@Singapore work.dir]# cat SimpleLineRegression.py 
    #!/usr/bin/python3
    
    import numpy as np
    
    def fitSLR(x,y):
        n = len(x)
        dinominator = 0
        numerator = 0
        for i in range(0, n):
            numerator += (x[i] - np.mean(x)) * (y[i] - np.mean(y))
            dinominator +=(x[i] - np.mean(x)) ** 2
    
        print ("numerator:", numerator)
        print ("dinominator", dinominator)
        b1 = numerator/float(dinominator)
        b0 = np.mean(y)/float(np.mean(x))
    
        return b0, b1
    
    def predict(x, b0, b1):
        return b0 + x*b1
    
    x = [1,3,2,1,3]
    y = [14,24,18,17,27]
    
    b0, b1 = fitSLR(x,y)
    print ("intercept:", b0, " slope:", b1)
    
    x_test = 6
    y_test = predict(6, b0, b1)
    print("y_test", y_test)
    
    [root@Singapore work.dir]# ./SimpleLineRegression.py 
    numerator: 20.0
    dinominator 4.0
    intercept: 10.0  slope: 5.0
    y_test 40.0
    [root@Singapore work.dir]# 

关键字