Python代码性能优化

发布时间:2019-09-25 08:24:31编辑:auto阅读(1797)

    Python性能优化的一般步骤:

    步骤1:找到性能 瓶颈
    步骤2:优化性能 瓶颈
    步骤3:goto 『步骤1』

    找出瓶颈

    不要相信直觉,使用专业工具

    使用专业工具:

    profile / cprofile

    line_profiler

    ipython: %prun

    使用 timeit 模块来评判性能

    import timeit
    timeit.Timer(…).timeit()
    ipython: %prun

    例一:

    def function1(): 
        for item in range(1000000):         
            pass

    在python2中,range的实现方式是直接在内存中开辟一个静态的数组,而xrange则是通过迭代的方式动态的去生成,所以显而易见,在需要的数据量特别大的时候,range则会非常的耗费内存,所以其优化方式如下:

    def function2(): 
        for item in xrange(1000000):         
            pass

    简单来说,就是在需要range时,用xrange来代替,需要注意的是,在python3中,已经用xrange来代替range了,所以在python3里面,不存在这种性能问题。

    例二:

    def function1(l):
        result = []
        for i in l:
            if i % 2 == 0:
                result.append(i)
        return result

    列表迭代式相对与一般的for循环或while循环迭代方式拥有更好的性能,所以可以用列表迭代式进行代替,但是这样会大大降低代码的可读性,所以在性能和代码可读性方面要认真权衡。

    def function2(l):
        return [i for i in l if i % 2 == 0]

    例三:

    def add_two(i):
        return i + 2
    
    def function1(l):
        result = []
        for item in l:
            result.append(chr(add_two(item)))
        return result

    在python里,访问局部变量的速度要快于访问全剧变量,并且函数调用开销也是不容忽视的。因此,可以通过以下方式来进行优化:

    def function2(l):
        result = []
        lchr = chr
        for item in l:
            result.append(lchr(item + 1))
        return result

    例四:

    l = range(10000) 
    
    def function1(): 
        return 9000 in l

    上边提到过,range的效率是相当低的,这是第一点,第二点是在判断一个数是否在一个列表中时,采用迭代的方式来判断,其时间复杂度是O(n),而当采用set时,由于set的实现方式是基于哈希的方式进行存取的,故在找一个元素是否在一个列表里的时候,其时间复杂度为O(1),效率提高了n倍,而且n越大,效率提高的就越明显。

    s = set(range(10000)) 
    
    def function2(item): 
        return item in s

    例五:

    def function1():
        l = []
        for i in xrange(10000):
            l.insert(0, i)

    这段代码的功能是往列表里面插入1-10000,且每次将新的元素插入到列表0号位置,但是由于列表的特性,每次插入到最左端的话,就需要将列表已存入的值整体右移,再将新的值插入0号位置。这样将使大量的时间耗费在移动元素上,造成效率低下,对于这种要求,我们可以使用deque来做双端队列。总结来说就是用正确的结构来做正确的事情。类似的结构还有:bisect / heapq / array / collections等。

    from collections import deque 
    
    def function2(): 
        l = deque() 
        for i in xrange(10000):
            l.appendleft(i)

    本文固定链接:http://blog.dreamchasinger.cn/?p=603
    欢迎访问我的自建博客:http://blog.dreamchasinger.cn

关键字