发布时间:2019-09-22 07:46:44编辑:auto阅读(1902)
收到的需求是在一个图上匹配到水印 然后将原来的水印换成一个新水印
先要安装一个库 库文件代码如下:
# coding=utf-8
import cv2
import numpy as np
# 膨胀算法 Kernel
_DILATE_KERNEL = np.array([[0, 0, 1, 0, 0],
[0, 0, 1, 0, 0],
[1, 1, 1, 1, 1],
[0, 0, 1, 0, 0],
[0, 0, 1, 0, 0]], dtype=np.uint8)
class WatermarkRemover(object):
""""
去除图片中的水印(Remove Watermark)
"""
def __init__(self, verbose=True):
self.verbose = verbose
self.watermark_template_gray_img = None
self.watermark_template_mask_img = None
self.watermark_template_h = 0
self.watermark_template_w = 0
self.watermark_start_x = 0
self.watermark_start_y = 0
def load_watermark_template(self, watermark_template_filename):
"""
加载水印模板,以便后面批量处理去除水印
:param watermark_template_filename:
:return:
"""
self.generate_template_gray_and_mask(watermark_template_filename)
def dilate(self, img):
"""
对图片进行膨胀计算
:param img:
:return:
"""
dilated = cv2.dilate(img, _DILATE_KERNEL)
return dilated
def generate_template_gray_and_mask(self, watermark_template_filename):
"""
处理水印模板,生成对应的检索位图和掩码位图
检索位图
即处理后的灰度图,去除了非文字部分
:param watermark_template_filename: 水印模板图片文件名称
:return: x1, y1, x2, y2
"""
# 水印模板原图
img = cv2.imread(watermark_template_filename)
# 灰度图、掩码图
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
_, mask = cv2.threshold(gray, 0, 255, cv2.THRESH_TOZERO + cv2.THRESH_OTSU)
_, mask = cv2.threshold(mask, 127, 255, cv2.THRESH_BINARY)
mask = self.dilate(mask) # 使得掩码膨胀一圈,以免留下边缘没有被修复
#mask = self.dilate(mask) # 使得掩码膨胀一圈,以免留下边缘没有被修复
# 水印模板原图去除非文字部分
img = cv2.bitwise_and(img, img, mask=mask)
# 后面修图时需要用到三个通道
mask = cv2.cvtColor(mask, cv2.COLOR_GRAY2BGR)
self.watermark_template_gray_img = gray
self.watermark_template_mask_img = mask
self.watermark_template_h = img.shape[0]
self.watermark_template_w = img.shape[1]
# cv2.imwrite('watermark-template-gray.jpg', gray)
# cv2.imwrite('watermark-template-mask.jpg', mask)
return gray, mask
def find_watermark(self, filename):
"""
从原图中寻找水印位置
:param filename:
:return: x1, y1, x2, y2
"""
# Load the images in gray scale
gray_img = cv2.imread(filename, 0)
return self.find_watermark_from_gray(gray_img, self.watermark_template_gray_img)
def find_watermark_from_gray(self, gray_img, watermark_template_gray_img):
"""
从原图的灰度图中寻找水印位置
:param gray_img: 原图的灰度图
:param watermark_template_gray_img: 水印模板的灰度图
:return: x1, y1, x2, y2
"""
# Load the images in gray scale
method = cv2.TM_CCOEFF
# Apply template Matching
res = cv2.matchTemplate(gray_img, watermark_template_gray_img, method)
min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res)
# If the method is TM_SQDIFF or TM_SQDIFF_NORMED, take minimum
if method in [cv2.TM_SQDIFF, cv2.TM_SQDIFF_NORMED]:
x, y = min_loc
else:
x, y = max_loc
return x, y, x + self.watermark_template_w, y + self.watermark_template_h
def remove_watermark_raw(self, img, watermark_template_gray_img, watermark_template_mask_img):
"""
去除图片中的水印
:param img: 待去除水印图片位图
:param watermark_template_gray_img: 水印模板的灰度图片位图,用于确定水印位置
:param watermark_template_mask_img: 水印模板的掩码图片位图,用于修复原始图片
:return: 去除水印后的图片位图
"""
# 寻找水印位置
img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
x1, y1, x2, y2 = self.find_watermark_from_gray(img_gray, watermark_template_gray_img)
self.watermark_start_x = x1
self.watermark_start_y = y1
# 制作原图的水印位置遮板
mask = np.zeros(img.shape, np.uint8)
# watermark_template_mask_img = cv2.cvtColor(watermark_template_gray_img, cv2.COLOR_GRAY2BGR)
# mask[y1:y1 + self.watermark_template_h, x1:x1 + self.watermark_template_w] = watermark_template_mask_img
mask[y1:y2, x1:x2] = watermark_template_mask_img
mask = cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY)
# 用遮板进行图片修复,使用 TELEA 算法
dst = cv2.inpaint(img, mask, 4, cv2.INPAINT_TELEA)
# cv2.imwrite('dst.jpg', dst)
return dst
def remove_watermark(self, filename, output_filename=None):
"""
去除图片中的水印
:param filename: 待去除水印图片文件名称
:param output_filename: 去除水印图片后的输出文件名称
:return: 去除水印后的图片位图
"""
# 读取原图
img = cv2.imread(filename)
dst = self.remove_watermark_raw(img,
self.watermark_template_gray_img,
self.watermark_template_mask_img
)
if output_filename is not None:
cv2.imwrite(output_filename, dst)
return dst
注意 上面的代码要加上这两句 才能显示 原来水印的位置
去水印代码如下:
from nowatermark import WatermarkRemover
path = 'E:/sample/'
watermark_template_filename = path + 'watermark.png'
remover = WatermarkRemover()
remover.load_watermark_template(watermark_template_filename)
remover.remove_watermark(path + '20180516144931.png', path + '20180516144932.png')
print(remover.watermark_start_x)
print(remover.watermark_start_y)
这里输出的两个值 是指的水印在原图中的位置
加水印代码如下:
import cv2
import numpy as np
path = 'E:/sample/'
matimage = cv2.imread(path + '20180516144932.png')
#matimagenew = np.zeros((matimage.shape[0],matimage.shape[1],3))
matimagenew = matimage-matimage
watermark_template_filename = path + 'watermark.png'
matlogo = cv2.imread(watermark_template_filename)
matimagenew[359:359+matlogo.shape[0],453:453+matlogo.shape[1]] = matlogo
imagenew = cv2.addWeighted(matimage,1,matimagenew,1,1)
savepath = path + '20180516144933.png'
cv2.imwrite(savepath,imagenew)
其中的359为水印在原图中的位置的纵坐标 453为横坐标
上一篇: Python 15.2 POP3 收取邮
下一篇: 3分钟看完MongoDB3.6新特性
47834
46376
37259
34720
29304
25964
24883
19942
19531
18013
5782°
6406°
5919°
5957°
7058°
5903°
5935°
6431°
6399°
7769°