一、numpy.flatten一、numpy.flatten一、num" />

Python——数组重组(flatten

发布时间:2019-09-22 07:41:01编辑:auto阅读(1553)

    ndarray.flatten(order='C')
    
        将数组变为一维
    
    Parameters:     order : {‘C’, ‘F’, ‘A’, ‘K’}, optional
                            ‘C’ means to flatten in row-major (C-style) order.
                            ‘F’ means to flatten in column-major (Fortran- style) 
                            order. ‘A’ means to flatten in column-major order if 
                            a is Fortran contiguous in memory, row-major order 
                            otherwise. ‘K’ means to flatten a in the order the 
                            elements occur in memory. The default is ‘C’.
    Returns:        y : ndarray
                            A copy of the input array, flattened to one
                            dimension.

    >>> a = np.array([[1,2], [3,4]])
    >>> a.flatten()   # 默认参数为"C",即按照行进行重组
    array([1, 2, 3, 4])
    >>> a.flatten('F') # 按照列进行重组
    array([1, 3, 2, 4])

    >>> x = np.arange(1, 7).reshape(2, 3)
    >>> x
    array([[1, 2, 3],
           [4, 5, 6]])
    >>> x.flat[3] # 返回重组后的一维数组下标为3的元素
    4
    >>> x.T
    array([[1, 4],
           [2, 5],
           [3, 6]])
    >>> x.T.flat[3] # 返回x的转置重组后的一维数组下标为3的元素
    5
    >>> x.flat = 3 # 将数组的元素均变为3
    >>> x
    array([[3, 3, 3],
           [3, 3, 3]])
    >>> x.flat[[1,4]] = 1 # 将数组重组后的一维数组小标为1,4的元素变为1
    >>> x
    array([[3, 1, 3],
           [3, 1, 3]])

    numpy.ravel

    numpy.ravel(a, order='C')

    >>> x = np.array([[1, 2, 3], [4, 5, 6]])
    >>> y = np.ravel(x) # 默认order="C",按照行进行重组
    >>> y
    [1 2 3 4 5 6]
    >>> y = np.ravel(x, order='F') # 按照列进行重组
    >>> y
    [1 4 2 5 3 6]
    >>> a = np.arange(12).reshape(2,3,2).swapaxes(1,2)
    >>> a
    array([[[ 0,  2,  4],
            [ 1,  3,  5]],
           [[ 6,  8, 10],
            [ 7,  9, 11]]])
    >>> a.ravel(order='C')
    array([ 0,  2,  4,  1,  3,  5,  6,  8, 10,  7,  9, 11])
    >>> a.ravel(order='K')
    array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11])

    numpy.reshape(a, newshape, order='C')

    >>> a = np.arange(6).reshape((3, 2))
    >>> a
    array([[0, 1],
           [2, 3],
           [4, 5]])
    >>> np.reshape(a, (2, 3)) 
    array([[0, 1, 2],
           [3, 4, 5]])
    >>> a.reshape(-1)
    array([0, 1, 2, 3, 4, 5])
    >>> a = np.array([[1,2,3], [4,5,6]])
    >>> np.reshape(a, 6)
    array([1, 2, 3, 4, 5, 6])

    numpy.resize

    >>> a=np.array([[0,1],[2,3]])
    >>> np.resize(a,(2,3))
    array([[0, 1, 2],
           [3, 0, 1]])
    >>> np.resize(a,(1,4))
    array([[0, 1, 2, 3]])
    >>> np.resize(a,(2,4))
    array([[0, 1, 2, 3],
           [0, 1, 2, 3]])

    ndarray.resize

    >>> b = np.array([[0, 1], [2, 3]])
    >>> b.resize(2, 3) 
    >>> b
    array([[0, 1, 2],
           [3, 0, 0]])
    >>> b.resize(1,4)
    array([[0, 1, 2, 3]])
    >>> b.resize(2,4)
    array([[0, 1, 2, 3],
           [0, 0, 0, 0]])

    请注意上述两者之间的区别,numpy.resize重组数据不够时,使用原数据依次填补;ndarray.resize重组数据不够时,使用原数据第一个元素填补。

关键字