发布时间:2019-09-20 07:35:27编辑:auto阅读(1507)
# KNN算法思路:
#-----------------------------------------------------#
#step1:读入数据,存储为链表
#step2:数据预处理,包括缺失值处理、归一化等
#step3:设置K值
#step4:计算待测样本与所有样本的距离(二值、序数、连续)
#step5:投票决定待测样本的类别
#step6:利用测试集测试正确率
#-----------------------------------------------------#
注:因为是python的初学者,可能很多高级的用法还不会,所以把python代码写的像C还请大家不要吐槽。同时希望大家指出其中的错误和有待提高的地方,大家一起进步才是最棒的。
说明:数据集采自著名UCI数据集库 http://archive.ics.uci.edu/ml/datasets/Adult
# Author :CWX # Date :2015/9/1 # Function: A classifier which using KNN algorithm import math attributes = {"age":0,"workclass":1,"fnlwg":2,"education":3,"education-num":4, "marital-status":5,"occupation":6,"relationship":7,"race":8, "sex":9,"capital-gain":10,"capital-loss":11,"hours-per-week":12, "native-country":13,"salary":14 } def read_txt(filename): #read data and convert it into list items = [] fp = open(filename,'r') lines = fp.readlines() for line in lines: line = line.strip('\n') items.append(line) fp.close() i = 0 b = [] for i in range(len(items)): b.append(items[i].split(',')) return b def computeNa(items): # detect missing value in list and handle it # items - an whole list for item in items[:]: if item.count(' ?') > 0: items.remove(item) # if item.count(' ?') >= -1: # items.remove(item) return items def disCal(lst1,lst2,type): # calculting distance between lst1 and lst2 distance = 0; if type == "Manhattan" or type == "manhattan": for i in range(len(lst2) - 1): distance += abs(lst1[i] - lst2[i]) elif type == "Elucildean" or type == "elucildean": for i in range(len(lst2) - 1): distance += math.sqrt((lst1[i] - lst2[i])**2) else: print "Error in type name" distance = -1 return distance def computeContinous(datalist,attribute): # compute continous attributes in list min_val = int(datalist[0][attribute]) max_val = int(datalist[0][attribute]) for items in datalist: if int(items[attribute]) < min_val: min_val = int(items[attribute]) elif int(items[attribute]) > max_val: max_val = int(items[attribute]) for items in datalist[:]: items[attribute] = (int(items[attribute]) - min_val) / float(max_val - min_val) return datalist def computeOrdinal(datalist,attribute,level): # compute ordinal attribute in datalist level_dict = {} for i in range(len(level)): level_dict[level[i]] = float(i) / (len(level) - 1) # level_dict[level[i]] = i for items in datalist[:]: items[attribute] = level_dict[items[attribute]] return datalist def KnnAlgorithm(dataTrain,sample,attribute,k): mergeData = dataTrain mergeData.append(sample) data = preProcessing(mergeData) distance = [] for i in range(len(data)-2): distance.append(disCal(data[i],data[len(data)-1],"Elucildean")) copy_dis = distance[:] # notice : not copy_dis = distance ,if it will be wrong distance.sort() class_dict = {"Yes":0,"No":0} for i in range(k): index = copy_dis.index(distance[i]) if data[index][attribute] == " >50K": class_dict["Yes"] += 1 else: class_dict["No"] += 1 if class_dict["Yes"] > class_dict["No"]: print "sample's salary >50K" else: print "sample's salary <=50K" def preProcessing(datalist): b = computeNa(datalist) b = computeContinous(b,attributes["age"]) workclass_level = [" Private"," Self-emp-not-inc"," Self-emp-inc"," Federal-gov"," Local-gov"," State-gov"," Without-pay"," Never-worked"] b = computeOrdinal(b,attributes["workclass"],workclass_level) b = computeContinous(b,attributes["fnlwg"]) education_level =[" Bachelors"," Some-college"," 11th"," HS-grad"," Prof-school", " Assoc-acdm"," Assoc-voc"," 9th"," 7th-8th"," 12th"," Masters"," 1st-4th"," 10th"," Doctorate"," 5th-6th"," Preschool"] b = computeOrdinal(b,attributes["education"],education_level) b = computeContinous(b,attributes["education-num"]) marital_status_level = [" Married-civ-spouse"," Divorced"," Never-married"," Separated"," Widowed"," Married-spouse-absent"," Married-AF-spouse"] b = computeOrdinal(b,attributes["marital-status"],marital_status_level) occupation_level = [" Tech-support"," Craft-repair"," Other-service"," Sales"," Exec-managerial"," Prof-specialty"," Handlers-cleaners", " Machine-op-inspct"," Adm-clerical"," Farming-fishing"," Transport-moving"," Priv-house-serv"," Protective-serv"," Armed-Forces"] b = computeOrdinal(b,attributes["occupation"],occupation_level) relationship_level = [" Wife"," Own-child"," Husband"," Not-in-family"," Other-relative"," Unmarried"] b = computeOrdinal(b,attributes["relationship"],relationship_level) race_level = [" White"," Asian-Pac-Islander"," Amer-Indian-Eskimo"," Other"," Black"] b = computeOrdinal(b,attributes["race"],race_level) sex_level = [" Female", " Male"] b = computeOrdinal(b,attributes["sex"],sex_level) b = computeContinous(b,attributes["capital-gain"]) b = computeContinous(b,attributes["capital-loss"]) b = computeContinous(b,attributes["hours-per-week"]) native_country_level = [" United-States"," Cambodia"," England"," Puerto-Rico"," Canada"," Germany"," Outlying-US(Guam-USVI-etc)"," India", " Japan"," Greece"," South"," China"," Cuba"," Iran"," Honduras"," Philippines"," Italy"," Poland"," Jamaica"," Vietnam"," Mexico"," Portugal", " Ireland"," France"," Dominican-Republic"," Laos"," Ecuador"," Taiwan"," Haiti"," Columbia"," Hungary"," Guatemala"," Nicaragua"," Scotland", " Thailand"," Yugoslavia"," El-Salvador"," Trinadad&Tobago"," Peru"," Hong"," Holand-Netherlands"] b = computeOrdinal(b,attributes["native-country"],native_country_level) return b def assessment(dataTrain,dataTest,atrribute,k): mergeData = computeNa(dataTrain) len_train = len(mergeData) mergeData.extend(computeNa(dataTest)) data = preProcessing(mergeData) len_test = len(data) - len_train res_dict = {"correct":0,"wrong":0} for i in range(len_test): distance = [] class_dict = {"Yes":0,"No":0} for j in range(len_train): distance.append(disCal(data[j],data[i+len_train],"Elucildean")) copy_dis = distance[:] distance.sort() for m in range(k): index = copy_dis.index(distance[m]) if data[index][atrribute] == " >50K": class_dict["Yes"] += 1 else: class_dict["No"] += 1 if class_dict["Yes"] > class_dict["No"] and mergeData[i+len_train][atrribute] == " >50K.": #Attention : in train data in the end of lines there is a "." res_dict["correct"] += 1 elif mergeData[i+len_train][atrribute] == " <=50K." and class_dict["Yes"] < class_dict["No"]: res_dict["correct"] += 1 else: res_dict["wrong"] += 1 correct_ratio = float(res_dict["correct"]) / (res_dict["correct"] + res_dict["wrong"]) print "correct_ratio = ",correct_ratio filename = "H:\BaiduYunDownload\AdultDatasets\Adult_data.txt" #sample = [" 80"," Private"," 226802"," 11th"," 7"," Never-married"," Machine-op-inspct"," Own-child"," Black"," Male"," 0"," 0"," 40"," United-States"," <=50K"] sample = [" 65"," Private"," 184454"," HS-grad"," 9"," Married-civ-spouse"," Machine-op-inspct"," Husband"," White"," Male"," 6418"," 0"," 40"," United-States"," >50K"] # this samples salary <=50K# # filename = "D:\MyDesktop-HnH\data.txt" a = read_txt(filename) print len(a) k = 3 #KnnAlgorithm(a,sample,attributes["salary"],k) trainName = "H:\BaiduYunDownload\AdultDatasets\Adult_test.txt" trainData = read_txt(trainName) #preProcessing(trainData) assessment(a,trainData,attributes["salary"],k)
结果:正确率 0.812416998672
运行时间 1小时20分钟
上一篇: Python开发环境之pyenv环境搭建
下一篇: EXT3与EXT4
47839
46383
37276
34727
29311
25969
24904
19946
19540
18019
5788°
6410°
5925°
5959°
7062°
5908°
5941°
6435°
6403°
7774°