发布时间:2019-09-16 07:35:53编辑:auto阅读(1659)
文本:ttt.txt 共7774865条记录
显示部分文本内容如下:
"OBJECT_ID","OBJECT_NAME","CREATED"
"20","ICOL$","2013/10/9 18:23:42"
"46","I_USER1","2013/10/9 18:23:42"
"28","CON$","2013/10/9 18:23:42"
"15","UNDO$","2013/10/9 18:23:42"
"29","C_COBJ#","2013/10/9 18:23:42"
"3","I_OBJ#","2013/10/9 18:23:42"
"25","PROXY_ROLE_DATA$","2013/10/9 18:23:42"
"41","I_IND1","2013/10/9 18:23:42"
"54","I_CDEF2","2013/10/9 18:23:42"
"40","I_OBJ5","2013/10/9 18:23:42"
"26","I_PROXY_ROLE_DATA$_1","2013/10/9 18:23:42"
"17","FILE$","2013/10/9 18:23:42"
"13","UET$","2013/10/9 18:23:42"
"9","I_FILE#_BLOCK#","2013/10/9 18:23:42"
"43","I_FILE1","2013/10/9 18:23:42"
"51","I_CON1","2013/10/9 18:23:42"
"38","I_OBJ3","2013/10/9 18:23:42"
"7","I_TS#","2013/10/9 18:23:42"
"56","I_CDEF4","2013/10/9 18:23:42"
......
......
为了方便测试:
我们选取前10001行,共10000条数据(第一条为字段名)
[11:05:12 wsdf@localhost Desktop]$ head -10001 ttt.txt > test.txt
如下是本人分别用python与shell编写的脚本,不代表脚本执行的方法是最优的,所作的比较仅为个人主观意见
1.Shell版
#!/bin/sh #mysql_import.sh #读ttt.txt文件,将其中各项写入数据库 i=0 # ###################设定新分隔符#################### SAVEDIFS=$IFS IFS=',' #mysql连接函数 mysql_conn(){ mysql -e $1; } echo "Begin time: `date`" #显示开始时间 ################创建数据库myimport################# mysql -e "drop database if exists myimport;" #mysql_conn "drop database if exists myimport;" mysql -e "create database myimport;" #mysql_conn "create database myimport;" #mysql -e "show databases;" ###############对ttt.txt进行处理################### sed -e 's/\"//g' -e 's#/#-#g' ttt.txt >t.txt #i=0时,读文本第一行,创建表import_obj,设置i=1 #i=1,读文本其他行,插入数据到import_obj中 #逐行读数据,并通过mysql -e command插入到表中 while read ID NAME CREATED do if [ $i -eq 0 ]; then #echo $ID,$NAME,$CREATED id=$ID name=$NAME created=$CREATED mysql -e "create table if not exists myimport.import_obj(id int unsigned auto_increment primary key,$ID int unsigned unique not null,$NAME varchar(60) not null,$CREATED datetime not null);" i=1 #mysql -e "desc myimport.import_obj;" else #echo "$CREATED" #mysql -e "select str_to_date($CREATED,'%Y-%m-%d %H:%i:%s');" mysql -e "insert into myimport.import_obj($id,$name,$created) value($ID,'$NAME','$CREATED');" fi done <t.txt echo "END time: `date`" #显示结束时间 #mysql -e "select * from myimport.import_obj;" rm -f t.txt #删除临时文件 IFS=$SAVEDIFS #还原分隔符
2.Python版(Python 2.7.5版本)
#!/usr/bin/python # mysql_import.py #使用MySQLdb去实现 import MySQLdb,os,time os.system("sed -e 's/\"//g' -e 's#/#-#g' test.txt >t.txt"); try: print time.strftime("%Y-%m-%d %H:%M:%S",time.localtime(time.time())) #记录开始时间 conn=MySQLdb.connect(host='127.0.0.1',user='root',passwd='zhang1992') print "conn success" except: print "conn error!" exit() cur=conn.cursor() cur.execute('drop database if exists myimport') cur.execute('create database myimport') i=0 count=0 with open('t.txt','r') as ft: for row in ft.readlines(): ID,NAME,CREATED=list(row.strip("\n").split(",")) if i==0: cid=ID cname=NAME created=CREATED cur.execute("create table if not exists myimport.import_obj(id int unsigned auto_increment primary key,%s int unsigned unique not null,%s varchar(60) not null,%s datetime not null)"%(ID,NAME,CREATED)) i=1 else: sql="insert into myimport.import_obj(%s,%s,%s) value(%d,'%s','%s')"%(cid,cname,created,int(ID),NAME,CREATED) cur.execute(sql) os.system("rm -f t.txt") cur.close() conn.commit() conn.close() print time.strftime("%Y-%m-%d %H:%M:%S",time.localtime(time.time())) #记录结束始时间
3.测试
10000条数据测试
[11:08:32 wsdf@localhost Desktop]$ bash mysql_import.sh Begin time: Tue Jul 19 11:08:35 CST 2016 End time: Tue Jul 19 11:11:50 CST 2016 [11:11:50 wsdf@localhost Desktop]$ python mysql_import.py 2016-07-19 11:16:46 conn success 2016-07-19 11:16:52
python处理完整文本测试
[13:06:30 wsdf@localhost Desktop]$ python mysql_import.py 2016-07-19 13:06:35 conn success 2016-07-19 13:14:57 [13:14:57 wsdf@localhost Desktop]$ mysql -e "select count(*) from myimport.import_obj"; +----------+ | count(*) | +----------+ | 774864 | +----------+
从上面的测试结果可以看出,python的效率明显高于shell。
shell无法保存mysql的连接状态,导致每执行一条插入语句都需要重新连接mysql及断开。这里的python中的MySQLdb通过事务,全部执行完毕才提交,一次提交完成那个所有的插入,节省连接与断开的时间。
上一篇: python中各进制之间的转换
下一篇: python 编程中的__doc__的使
47841
46390
37281
34733
29312
25973
24913
19950
19544
18030
5791°
6413°
5927°
5961°
7064°
5911°
5942°
6437°
6404°
7778°