发布时间:2019-09-10 09:13:37编辑:auto阅读(1925)
此脚本可以用来统计某个端口上连接的IP的数量,统计连接到这一端口的所有IP、最多的IP和次数以及TCP连接状态。
涉及到Python读取网络连接统计信息以及统计计算的一些基本操作。在编写脚本的过程中预先定义了统计信息的数据结构,在向最终结果中添加统计信息时需要用到list去重功能,因此临时创建了一个列表使用set()函数去重。set()函数不能直接add字典类型,因此先将字典转成可哈希的字符串,再将去重后的字符串转成字典。其中字典、列表和集合都属于不可哈希的类型。
此脚本可以用于Windows、Linux以及OSX,其中OSX上运行需要使用root权限(由于psutil的原因),使用时直接使用python运行此脚本文件即可。如果提示‘ImportError’,则使用pip安装所缺的模块,非特权用户使用pip安装模块时需要使用sudo。
脚本内已经设定port为22,可以自己修改代码,使它允许成接收命令行位置参数或者手动输入。
运行效果图如下:
1.使用root用户运行
2.使用非特权用户运行
脚本文件可以通过GitHub获取:https://github.com/DingGuodong/LinuxBashShellScriptForOps/blob/master/functions/net/tcp/port/portStatistics.py
脚本内容如下:
#!/usr/bin/python # encoding: utf-8 # -*- coding: utf8 -*- """ Created by PyCharm. File: LinuxBashShellScriptForOps:portStatistics.py User: Guodong Create Date: 2016/10/27 Create Time: 10:51 Note: Usage: Using user as you want in Linux/Windows system. The python module 'psutil' and 'prettytable' is required, using pip install them. ``` pip install psutil prettytable ``` On OSX this function requires root privileges. # python portStatistics.py Total connections of port 22 is 10. +--------------+-------------------+-------------------+-----------------+--------------+ | Total Counts | Remote IP Address | Established Conns | Time_wait Conns | Others Conns | +--------------+-------------------+-------------------+-----------------+--------------+ | 5 | 10.6.28.46 | 5 | 0 | 0 | | 1 | 10.6.28.35 | 1 | 0 | 0 | | 1 | 10.6.28.27 | 1 | 0 | 0 | | 2 | 10.6.28.135 | 2 | 0 | 0 | | 1 | 10.6.28.125 | 1 | 0 | 0 | +--------------+-------------------+-------------------+-----------------+--------------+ Elapsed time: 0.0104579925537 seconds. # """ import psutil import prettytable import time startTime = time.time() port = 22 # ssh -i /etc/ssh/ssh_host_rsa_key root@10.6.28.28 # define data structure for each connection, each ip is unique unit ipaddress = { 'ipaddress': None, 'counts': 0, 'stat': { 'established': 0, 'time_wait': 0, 'others': 0 } } # define data structure for statistics statistics = { 'portIsUsed': False, 'portUsedCounts': 0, 'portPeerList': [ { 'ipaddress': None, 'counts': 0, 'stat': { 'established': 0, 'time_wait': 0, 'others': 0 }, }, ] } tmp_portPeerList = list() portPeerSet = set() netstat = psutil.net_connections() # get all ip address only for statistics data for i, sconn in enumerate(netstat): if port in sconn.laddr: statistics['portIsUsed'] = True if len(sconn.raddr) != 0: statistics['portUsedCounts'] += 1 ipaddress['ipaddress'] = sconn.raddr[0] tmp_portPeerList.append(str(ipaddress)) # dict() list() set() is unhashable type, collections.Counter for ip in tmp_portPeerList: portPeerSet.add(str(ip)) # remove duplicated ip address using set() for member in portPeerSet: statistics['portPeerList'].append(eval(member)) # add statistics data for each ip address for sconn in netstat: if port in sconn.laddr: if len(sconn.raddr) != 0: for i, item in enumerate(statistics['portPeerList']): if item['ipaddress'] == sconn.raddr[0]: statistics['portPeerList'][i]['counts'] += 1 if sconn.status == 'ESTABLISHED': statistics['portPeerList'][i]['stat']['established'] += 1 elif sconn.status == 'TIME_WAIT': statistics['portPeerList'][i]['stat']['time_wait'] += 1 else: statistics['portPeerList'][i]['stat']['others'] += 1 # print statistics result using prettytable if statistics['portIsUsed']: print "Total connections of port %s is %d." % (port, statistics['portUsedCounts']) table = prettytable.PrettyTable() table.field_names = ["Total Counts", "Remote IP Address", "Established Conns", "Time_wait Conns", "Others Conns"] for i, ip in enumerate(statistics['portPeerList']): if ip['ipaddress'] is not None: table.add_row([ip['counts'], ip['ipaddress'], ip['stat']['established'], ip['stat']['time_wait'], ip['stat']['others']]) print table.get_string(sortby=table.field_names[1], reversesort=True) else: print 'port %s has no connections, please make sure port is listen or in use.' % port endTime = time.time() print "Elapsed time: %s seconds." % (endTime - startTime)
tag:端口统计,python TCP连接数统计,Python统计连接数
--end--
上一篇: python虚拟开发环境搭建
下一篇: python爬取百度图片代码
47850
46410
37292
34741
29322
25979
24924
19959
19550
18037
5800°
6422°
5937°
5966°
7074°
5921°
5952°
6447°
6409°
7788°