1.2为多变量数据绘制散点阵图

发布时间:2019-03-16 22:24:09编辑:auto阅读(1846)

      在这篇博客中,用一个小栗子来介绍一下散点图在多变量数据中的一方面应用。

      scikit库中提供了一些数据,这里使用iris数据集,是一种鸢尾属植物,所给数据中包括两种类型的花,目的是根据所给信息判断两种花分别属于哪一类。也就是说找到区分这两种花的方法。

      加载库

    1 from sklearn.datasets import load_iris
    2 import numpy as np
    3 import matplotlib.pyplot as plt
    4 import itertools

      导入数据

    1 data = load_iris()
    2 x = data['data']
    3 y = data['target']
    4 col_names = data['feature_names']

      首先看一下这个数据集中都有什么,放一张过程中的截图。

     

     

     

     

     

     

     

     

     

     

     

     

     

      从上面以及具体内容(数据较多,可以自行查看)可以看到,x中是150x4的二维数组,对应着花萼的长度宽度和花瓣的长度宽度。y中是存储着已知的每组数据对应的花的种类,有0、1两种情况。feature_names中存了每个属性的名称。

      先给出主要的程序,然后慢慢解释其中用到的知识点。

     1 # 绘出6个图形,包括了以下几个列:花萼长度、花萼宽度、花瓣长度和花瓣宽度
     2 plt.close('all') # 关掉其他的图像
     3 plt.figure(1)
     4 
     5 # 绘制一个3行2列的图
     6 subplot_start = 321
     7 col_numbers = range(0, 4)
     8 # 为图形添加标签
     9 col_pairs = itertools.combinations(col_numbers, 2)
    10 plt.subplots_adjust(wspace = 0.5)
    11 
    12 for col_pair in col_pairs:
    13     plt.subplot(subplot_start)
    14     plt.scatter(x[:,col_pair[0]], x[:,col_pair[1]], c=y)
    15     plt.xlabel(col_names[col_pair[0]])
    16     plt.ylabel(col_names[col_pair[1]])
    17     subplot_start += 1
    18     plt.show()
    • #7:col_numbers = range(0, 4) 上面看到数据中包括四个属性来判断该花属于哪个类型,在程序当中也就是二维数组中列的0~3。
    • #9:col_pairs = itertools.combinations(col_numbers, 2)  itertools.combination可以将里面的内容组合在一起。这里由于二维更便于展示,两两组合起来绘图,观察哪些属性可以更清晰的区分出两种花来。返回一个迭代器。
    • #12:循环从生成的所有两两组合中取出来,绘图。
    • #14:plt.scatter(x[:,col_pair[0]], x[:,col_pair[1]], c=y)  绘制散点图,横纵轴为组合在一起的两个属性,[:,col_pair[0]]的意思就是组合中第一个属性的150个数据。
    • #17: subplot_start += 1  使图像依次画在一个图形中。
      
     
     
      根据上述得到的两两组合的结果绘制出6副图像,综合考虑合理性和区分度高,可以发现,最后一张图可以清晰的将两种花区分开来。所使用的属性位花瓣长度和花瓣宽度。那么,后续就可以使用这两个因素来判别花是属于哪个类型的了。

     

关键字