机器学习_K近邻Python代码详解

发布时间:2019-03-15 23:30:31编辑:auto阅读(1710)

    k近邻优点:精度高、对异常值不敏感、无数据输入假定;
    k近邻缺点:计算复杂度高、空间复杂度高


    import numpy as np
    import operator
    from os import listdir

    # k近邻分类器
    def classify0(inx, dataSet, labels, k):
    dataSetSize = dataSet.shape[0] # 返回dataset第一维的长度,也就是行数
    diffMat = np.tile(inx, (dataSetSize, 1))-dataSet # tile表示把inx行向量按列方向重复datasetsize次
    sqDiffMat = diffMat**2
    sqDistances = sqDiffMat.sum(axis=1) # 按列求和
    distances = sqDistances**0.5
    sortedDistIndicies = distances.argsort() # 返回的是数组从小到大的索引值
    classCount = {} # 定义一个空字典
    for i in range(k):
    voteLabel = labels[sortedDistIndicies[i]] # 返回前k个距离最小的样本的标签值
    classCount[voteLabel] = classCount.get(voteLabel, 0)+1 # get 表示返回指定键的值
    # lambda表示输入classCount返回冒号右边的值,reverse=True表示按照降序排列
    sortedClassCount=sorted(classCount.items(), key=lambda classCount: classCount[1], reverse=True)
    return sortedClassCount[0][0]

    # 把.txt文件转换成矩阵形式
    def file2matrix(file):
    file = open(file) # 返回文件对象
    arr = file.readlines() # 返回全部行,是list形式,每一行为list的一个元素
    number = len(arr) # 返回对象长度
    returnMat = np.zeros((number,3))
    index = 0
    labelMat = []
    for line in arr:
    #line = line.strip('\n')
    #newline = line.split(' ')
    newline = line.strip('\n').split(' ') # 处理逐行数据,strip表示把头尾的'\n'去掉,split表示以空格来分割行数据
    # 然后把处理后的行数据返回到newline列表中
    returnMat[index,:] = newline[0:3] #表示列表的0,1,2列数据放到index行中
    labelMat.append(int(newline[-1]))
    index+=1
    return returnMat,labelMat

    # 归一化
    def autoNorm(dataSet):
    minVals = dataSet.min(0)

    maxVals = dataSet.max(0)
    ranges = maxVals-minVals
    normDataSet = np.zeros(np.shape(dataSet))
    m = normDataSet.shape[0]
    A = normDataSet
    A = np.tile(minVals, (m,1))
    normDataSet = dataSet-A
    normDataSet = normDataSet/np.tile(ranges,(m,1))
    return normDataSet

    # 把图像转化成向量的形式
    def img2vector(filename):
    returnVect = np.zeros((1,1024))
    fr = open(filename)
    for i in range(32):
    lineStr = fr.readline() # readline()表示从首行开始,每次读取一行
    for j in range(32):
    returnVect[0,32*i+j] = int(lineStr[j]) #int()函数用于将一个字符串或数字转换成整型
    return returnVect # 一张图片转化成一行后的数组

    # 手写数字识别系统的测试代码
    def handwritingClassTest():
    hwLabels = []
    trainingFileList = listdir('E:/workspace/digits/trainingDigits')
    m=len(trainingFileList)
    trainingMat = np.zeros((m,1024))
    for i in range(m):
    fileNameStr = trainingFileList[i] # 例如9_45.txt
    fileStr = fileNameStr.split('.')[0] # split('.')通过.分隔符对字符串进行切片
    classNumStr = int(fileStr.split('_')[0]) # split('_')通过_分隔符对字符串进行切片
    hwLabels.append(classNumStr)
    trainingMat[i,:] =img2vector('E:/workspace/digits/trainingDigits/%s' % fileNameStr)
    testFileList = listdir('E:/workspace/digits/testDigits')
    mTest = len(testFileList)
    errorCount = 0
    for i in range(mTest):
    fileNameStr = testFileList[i]
    fileStr = fileNameStr.split('.')[0]
    classNumStr = int(fileStr.split('_')[0])
    vectorUnderTest = img2vector('E:/workspace/digits/testDigits/%s' % fileNameStr)
    classResult = classify0(vectorUnderTest,trainingMat,hwLabels,3)
    print('the classifier came back with: %d, the real answer is: %d' % (classResult,classNumStr))
    if (classResult != classNumStr):
    errorCount += 1.0
    print('\n the total number of errors is: %d' % (errorCount))
    print('\n the total error rate is: %f' % (errorCount/float(mTest)))

    handwritingClassTest()



关键字

上一篇: python之selectors

下一篇: 生产者消费者